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Abstract. Epoxy nanocomposites fulfill tight and compelling industrial 
requirements in the field of structural material for aeronautical applications. 
In this paper the development and characterization of nanocomposites 
obtained by filling tetrafunctional epoxy resin (tetraglycidyl methylene 
dianiline cured with the aromatic diamine 4,4’-diaminodiphenylsulfone, 
named T20BD) with carbon nanofibers (CNF) is discussed. A filler amount 
ranging from 0.05% to 2%wt is considered. The DC volume conductivity 
and the dielectric characteristics (ϵ’)  of the nanocomposites in the frequency 
range 100Hz-1MHz are analyzed and compared with those of the pure resin. 
Atomic force microscopy, mapping the local topography by means of 
tunneling effect, is used for recording the electrical percolation path for 
nanocomposites. In particular, the case 1.3wt% of CNF filled 
nanocomposites that exhibits a stable behavior of the conductivity in the full 
investigated frequency range, is here reported. The developed filled epoxy 
used in carbon fiber reinforced composites, shows enhanced electrical 
properties leading to better electromagnetic (EM) performances in EM 
coatings, EM shields and filters or radar absorber materials (RAMs). 

1 Introduction  
Since their discovery, due to their unique physical, chemical and electrical properties, 

carbon nanotubes (CNTs) and others related one-dimensional filler such as carbon nanofibers 
(CNFs) opened a wide range of applications in many fields of science and engineering 
allowing to obtain new materials and new electronic devices. In the last decade many research 
efforts have been devoted toward studies on  polymer nanocomposites filled with such highly 
conductive additives given their peculiar and enhanced properties with respect to those of the 
neat resin. These improvements strongly depend on the chemistry of polymer matrices, nature 
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of nanofillers and their mutual interactions [1, 2, 3]. In particular, the improvements are 
originated by the huge filler/polymer matrix interface which allows to transfer the notable 
properties of the fillers to the resulting composites. This in turn has a major influence on the 
electrical, thermal and mechanical properties of the resulting nanocomposite systems [4]. In 
particular, the introduction of very small weight percentages of high aspect ratio (the ratio 
between length and diameter) carbon nanostructures  leads to a sharp insulation-conduction 
transition in the resulting polymer-based composite due to the formation of electrically 
conductive networks. Among the different carbon nano particles, carbon nanofibers, 
compared to CNTs, possess higher compatibility with the host matrix since their walls are 
subjected to smaller van der Waals forces thus ensuring better dispersion for longer periods 
of time [5]. Although there are a large numbers of epoxy resins available, the tetrafunctional 
epoxy resin, tetraglycidyl methylene dianiline (TGMDA), cured with the aromatic diamine 
4,4’-diaminodiphenylsulfone (DDS) is extensively adopted for manufacturing of carbon 
fiber-reinforced composites (CFRC). This matrix is particularly suited for weight-sensitive 
applications, such as aircraft vehicles, allowing to achieve fuel/energy minimization and to 
accomplish sustainability requirements [6]. In the present work, a morphological analysis 
and an extensive electrical characterization both in DC and AC domain is carried out on 
samples of TGMDA reinforced with different amount of CNFs up to 2 wt.%. More in details, 
after investigating the dispersion state of the nanofillers inside the polymeric matrix by means 
of scanning electron microscopy, the electrical percolation threshold (EPT), the DC volume 
conductivity and the dielectric characteristics of the nanocomposites in the frequency range 
100Hz-1MHz are analyzed and compared with those exhibited by the pure resin. Moreover, 
tunneling AFM (TUNA), capable to detect ultra-low currents ranging from 80 fA to 120 pA, 
is adopted as innovative tool for correlating the local topography,  in terms of conductive 
pathways and interconnections in CNF/resins, with the results concerning the electrical 
properties. 

The interesting electrical properties shown by the CNF/epoxy nanocomposites open the 
way for developing tailored structures able to meet the demanding industrial requirements in 
the aeronautic field both as structural materials and for electromagnetic (EM) applications 
such as coatings, EM shields and filters or radar absorber materials (RAMs). 
 
2 Experimental section  
 
2.1 Materials and Methods  
 
The epoxy matrix was obtained by mixing TGMDA with BDE monomer at a concentration 
of 80%:20% (by weight) epoxide to flexibilizer. Epoxy blend and DDS (at a stoichiometric 
concentration with respect to the epoxy rings) were mixed at 120 °C and the carbon 
nanofibers were incorporated into the matrix by ultrasonication for 20’ (Hielsher model 
UP200S-24kHz high power ultrasonic probe). CNFs, in the form of powders, were produced 
at Applied Sciences Inc. and belong to the Pyrograf III family. In particular, the as-received 
CNFs are subjected to a thermal treatment at 2500°C since it was found that such a cure is 
effective in improving both mechanical and electrical properties [7, 8]. Different weight 
percentages (0.05, 0.32, 0.64, 0.80, 1.00, 1.30 and 2.00) of CNFs were dispersed within the 
epoxy resin. All the obtained mixtures were cured by a two-stage cycle: a first isothermal 
stage was carried out at 125 °C for 1 h followed by a second isothermal stage at higher 
temperatures up to 200°C for 3 h.  
Morphological information are achieved by Scanning Electron Microscope-SEM (mod. LEO 
1525, Carl Zeiss SMT AG, Oberkochen, Germany) performed directly on the nanofiller and   
on epoxy/1.3%CNF nanocomposite, appropriately cut and etched according to a well-
established procedure already described in previous papers [5]. 

The conductivity mapping at nanoscale level of the nanofilled epoxy samples was performed 
by TUNA-AFM. The overall setup employs a conductive AFM probe, an external voltage 
source needed to provide a potential difference between the tip and the sample holder and a 
current to voltage converter (trans-impedance amplifier, TIA) used to convert the (analogical) 
current signal into voltages in digital form that can be read and processed by a PC.  
In particular, in our experiments TUNA runs with a cantilever holder and an epoxy sample 
filled with conductive CNFs, electrically connected to an external voltage source. Atomic 
force microscope (AFM) images were captured at ambient conditons (30%-40% humidity) 
with a Dimension 3100 coupled with a Bruker NanoScope V multimode AFM (Digital 
Instruments, Santa Barbara, CA) controller operating in tunneling current mode (TUNA-
AFM), using microfabricated silicon tips/cantilevers. The TUNA-AFM measurements were 
carried out through platinum-coated probes with nominal spring constants of 35 N m-1 and 
electrically conductive tip of 20 nm. TUNA -AFM operates in contact mode. In feedback 
mode, the output signal is the DC bias, adjusted to maintain the electric current setpoint. The 
following values of the TUNA control parameters are adopted: DC sample bias ranged from 
1V to 2V, current sensitivity was 1nA/V, current range was 200nA, samples/lines 
determining the number of data points or pixels along the X and Y axis are 256, scan rate 
that controls the rate at which the cantilever scans across the sample area was 0.9-1.5 Hz s-1. 
In order to obtain repeatable results, several regions of the specimens were scanned. The 
images were analyzed using the Bruker software Nanoscope Analysis 1.80 (Build 
R1.126200). Regarding the electrical characterization, the samples were coated by using a 
silver paint (RS 186-3600,) with a thickness of about 50 μm and a surface resistivity of 0.001 
Ω∙cm (when fully hardened) in order to reduce possible surface roughness and to ensure a 
good electrical contact with the measuring electrodes. The measurement apparatus for DC 
characterization of samples above the electrical percolation threshold (i.e. EPT) is composed 
by a multimeter Keithley 6517A operating as voltage generator (max ±1000V) and voltmeter 
(max ±200V) and an ammeter HP34401A (min current 0.1μA). For below the percolation 
threshold the system is composed exclusively by a multimeter Keithley 6517A working as 
voltage generator and pico-ammeter (min current 0.1fA). The AC properties are measured in 
the frequency range [0.1-1000] kHz by using a Quadtec7600 dielectric analyzer and by 
applying a sinusoidal stimulus of amplitude 0.1V or 1V for specimens above or below the 
EPT respectively. 
 
3 Results and discussions  
 
3.1 Morphological Analysis  
 
In order to analyze the dispersion state of the nanofillers inside the polymeric matrix, the 
epoxy nanocomposites were investigated by means of SEM analysis carried out. Etched 
samples are adopted to remove the resin surrounding the nanofibers, leaving them bare. 
Fig.1 (on the left) shows SEM image of the fracture surface of the Epoxy/1.3% CNF sample. 
A homogeneous structure is achieved since the CNFs, characterized by straight walls (Fig.1, 
right) are uniformly distributed inside the resin. The heat treatment applied to the filler has 
prevented agglomeration phenomena encountered with composites obtained by using the as-
received fibers [5]. 
Moreover, it is worth noting that, in the dark zone of the SEM image, the etching procedure 
allows to highlight the presence of carbon nanofibers arranged as a continuous network in 
the matrix thus confirming the interesting electrical behavior revealed by the experimental 
characterization discussed in the next section. 
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Fig. 1. SEM images of a fracture surface of Epoxy/1.3% CNF (left) and of the adopted carbon 
nanofibers, CNF2500 (right). 
 
3.2 Electrical properties supported by TUNA-AFM investigation 
 
3.2.1 DC investigation 
 
Nanocomposites with varying weight percentage of fillers (up to 2 wt%) were prepared and 
subsequently electrically characterized. In Figure 2 the variation of the bulk conductivity of 
the composites is reported as a function of increasing filler content. 
 

 
Fig. 2. DC Volume electrical conductivity of nanocomposites as a function of the fillers concentrations 
(wt%). Schematic of percolation paths, TUNA-AFM image and log-log plot of the electrical 
conductivity as function of the filler amount for estimating of the characteristic parameters of the 
percolation law are shown in the insets. 
 
As shown, the unfilled resin (green circle marker) is an insulating material since its electrical 
conductivity is of the order of pS/m. An abrupt increase of the volume conductivity, namely 
several orders of magnitude with respect to those of insulating compositions, was observed 
as the electrical percolation threshold (EPT), i.e. the minimum amount of conductive filler 

needed to form at least one continuous electrical path (see inset of Fig.2) within the polymeric 
resin, is achieved. The experimental results concerning the electrical conductivity provide 
information about this value that falls in the narrow interval [0.05–0.32] wt.%. After that, 
due to an interconnected morphological network established among neighbouring 
nanoparticles that provides a continuous electrically pathway  for  the electrons (see, inset of 
Fig.2, TUNA-AFM image), the conductivity of the composites increases significantly 
following a trend described by a power-law of the form: 

=0(-c)t, (1) 

where 0 is the intrinsic conductivity of the filler, c is the electrical percolation threshold 
(i.e. EPT) and t is a critical exponent depending on the dimensionality of the percolating 
structure [9,10].  
A significant value of 2 S/m is achieved for the conductivity of the nanocomposite at the 
highest filler loading (i.e. 2 wt%).  
Moreover, form the graph presenting the log–log plot of the electrical conductivity as 
function of the filler amount (inset in Fig.2), it is possible to estimate the characteristic 
parameters of eq.1. A value of 2.2 and 0.32 wt.% is found for t and for c, respectively. More 
in details, the value for the critical exponent t coincides with the slope of the fitting curve of 
the experimental data, whereas the value of the estimated electrical percolation threshold (i.e. 
c.) acts as a fit parameter to achieve the maximum for the regression coefficient of the 
estimated curve (i.e. R2 close to 1).  Such estimated values agree respectively, with typical 
values reported in literature [11] and with the percolation threshold detected experimentally. 
As schematized in Fig.3 (left), the electrical conductivity in nanocomposites materials can be 
interpreted in terms of electron tunneling according to which the electrons jump from a 
conductive fiber to the closest one over a small distance of the order of a few nanometers 
[12]. This electrical contribution can be evaluated by means of a suitable resistance, i.e. 
Rtunnel, as per the following expression: 
 

 𝑅𝑅������ = ℎ�𝑑𝑑
𝐴𝐴𝑒𝑒�√2𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒����

� √���� 
(2) 

 
where h is the Plank’s constant, A and d are the cross-sectional area and the distance between 
the filler (coincident with the thickness of the insulating resin wrapped around the particles) 
respectively, e is the electron charge, m is the mass of electron and λ is the height of barrier, 
typically of few eV.  
A method reported in literature [13-15] to verify that the electron tunneling is effectively the 
principal electrical transport mechanism in such nanofilled structures is based on the 
occurrence, for concentrations () above the EPT, of a linear relation (see Fig. 3, left) between 
the electrical conductivity (expressed in natural logarithmic scale) and −1/3, i.e.: 
 

𝑙𝑙𝑙𝑙�𝜎𝜎� ∝ 𝜙𝜙���� (3) 
 
The straight line is a fit curve of the experimental data (markers): the value of R2 close to 1 
confirms that the electrical conduction network in nanocomposites materials is mainly 
achieved through the quantum tunneling effect. 
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Fig. 3. Schematic of tunneling effect and its electrical representation (left). Plot of the natural logarithm 
of DC conductivity for sample above the EPT vs. -1/3 for the validation (right) of the electron tunnelling 
conduction mode. 
 
3.2.1 AC investigation 
 
New advanced materials like nanocomposites whose properties can be modified by varying 
the amount of fillers dispersed within the host matrix are promising candidates for 
electromagnetic (EM) applications such as shields, filters and radar absorber materials 
(RAMs). In order to evaluate their effectiveness for such purposes, the experimental 
investigation of the AC electrical properties is highly recommended.  
Fig. 4 shows the AC electrical conductivity (a) and real part of dielectric permittivity (b) of 
the nanocomposites evaluated in the frequency range from 100Hz up to 1MHz. As it concerns 
the AC conductivity, it is worth noting as, at low frequency (i.e. 100Hz) and for each specific 
nanocomposite system, its value agrees with that measured in DC. In particular, for 
composites below the percolation threshold, the electrical conductivity presents a strong 
frequency dependent behaviour similar to that of dispersive (i-e lossy dielectrics) materials. 
In fact, the conductivity rises gradually with increasing frequency due to the increasing 
contribution of the frequency dependent displacement current associated to the capacitive 
effect of materials. On the contrary, composites above the EPT show a frequency independent 
conductivity, at least in the investigated frequency range.  
Particular emphasis shall be given, especially as it concerns the design for electromagnetic 
purposes, to the complex dielectric permittivity:  

(4) 
where ε’ and ε″ are the real and imaginary parts, respectively. More in details, the real part 
of the dielectric permittivity is associated to the displacement current and it is mainly affected 
by polarization phenomena within the material, whereas the imaginary part of the permittivity 
takes into account the losses inside the material. Recently, epoxy based systems are being 
increasingly investigated for their dielectric properties, since the introduction of fillers 
demonstrate several enhancement in their properties when compared to that obtained for 
unfilled epoxy systems. For some interesting electromagnetic applications is required to 
improve the relative permittivity of such materials. So the dispersion within the epoxy matrix 
of electrically conductive  particles (such as CNFs) with sufficient quantity allows to reach 
high dielectric values without sacrificing typical features of the host matrix like high 
breakdown strength and other interesting mechanical, thermal and chemical properties.  
Fig. 4c reports the real part of the complex permittivity as function of the frequency for fillers 
content up to a total of 2 wt%. As expected, the results show that dielectric permittivity (i.e. 
ε') increases with respect to that of neat resin with the addition of filler, most likely due to 

the increase in polarization of the matrix/filler interface and/or the interfacial polarization 
attributable to the conductive particles [16]. A careful analysis of the TUNA current profile 
(Fig.4 c) of the T20BD + 1.3%CNF2500 sample confirms the overall macroscopic 
conductive behaviour (1.37 S/m measured in DC) of the CNF/resins since currents ranging 
from 122.8 fA to 1.1 pA  were detected at nanoscale level. In fact, the possibility to reveal 
such low currents (ranging from fA to pA) is due to the effective conductive paths established 
within the matrix, as emerges by the strong colors contrast of the TUNA current micrograph. 
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